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Summary. We have applied a gauge origin invariant method for calculations of
nuclear magnetic shielding constants to the singly bonded molecules BF, F,, BH3,
CH,, NH,, H,O, and HF as well as to the 'H shielding constants of HCN and
C,H,. The calculations were performed at the RPA and second order polarization
propagator (SOPPA) level of theory. For most molecules the correlation contribu-
tion in SOPPA is less diamagnetic than in the comparable MP2 calculations. For
F,, SOPPA gives a large paramagnetic correlation correction whereas the MP2
method gives a very small correlation contribution. For all molecules agreement
with experimental results is generally improved at the SOPPA level compared to
RPA. We have also demonstrated that second order gauge origin invariant,
common and local origin (SOLO) methods do not necessarily give the same
shielding even in the limit of a converged basis set.

Key words: Magnetic shieldings — Ab initio — Polarization propagator methods
— SOPPA - Gauge origin invariant

1 Introduction

In the first paper of this series [1] we applied a method for consistently correlated
calculations [2] of magnetizabilities and gauge origin independent nuclear mag-
netic shielding constants to the triply bonded molecules CO, N,, HCN, CN™~ and
HCCH. We systematically investigated the basis set dependence of this new
method and found that inclusion of p- and d-functions with large exponents is
important for the convergence of the sum-over-states diamagnetic contribution to
the nuclear magnetic shielding, whereas it is necessary to include diffuse d-functions
for the corresponding sum-over-states diamagnetic contribution to the magnetiza-
bility. Universal atomic basis sets containing these functions were developed and
applied to all of the molecules studied. The effect of electron correlation was
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investigated within the second order polarization propagator approximation
(SOPPA) [3]. We found that SOPPA gives a much smaller overall diamagnetic
correlation contribution to the nuclear magnetic shielding constants of the heavy
atoms in the triply bonded molecules than comparable MP2 and MC-based
calculations. We found an overall paramagnetic correlation correction to the
magnetizability.

In a second paper [4] we applied this method in combination with the coupled
cluster polarization propagator approximations (CCDPPA/CCSDPPA)[5] to the
potential temperature independent van Vleck paramagnetism of closed shell dia-
tomic hydrides with six valence electrons. We have found that BH, CH" and SiH™"
are paramagnetic, MgH~, AIH and GeH* are diamagnetic and BeH ™ is a border-
line case tilting towards paramagnetism. In the present paper we apply the gauge
origin invariant method for calculations of nuclear magnetic shielding constants
and the basis sets developed in the first paper [1] to seven simply singly bonded
molecules: BF, F,, BH;, CH,, NH;, H,0, and HF as well as to HCN and C,H,.

From second-order perturbation theory one obtains two contributions to the
nuclear magnetic shielding tensor [6]: the so-called diamagnetic (6%) and paramag-
netic (6?) terms

ox(R)=ck(R)+ ok(R)
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where all operators are given in the second quantization notation. Here
I(Rg)=(r—Ry) x p is the angular momentum operator defined with respect to the
position of the nucleus K while I(R) ={(r—R) x p is defined with respect to the gauge
origin R. The two contributions to the magnetic shielding tensor are linear in R.
Only their sum, however, is an observable and must therefore be independent of the
choice of R when exact eigenstates of the Hamiltonian are used in Eq. (1). This also
holds for all methods which fuifill the off-diagonal hypervirial relation, such as the
coupled perturbed Hartree—Fock/random phase approximation (CHF/RPA) or its
multireference generalization (MC-RPA) in the limit of a complete basis set. In all
other cases, there will remain a net gauge origin dependence of the total nuclear
magnetic shielding constant

ox(R')=ox(R)+C{-(R'—R). 2

The linear C{ gauge origin dependence vector can be calculated directly [7, 8] and
it is thus possible to obtain the nuclear magnetic shielding constant for any gauge
origin from a calculation at a single gauge origin.

Geertsen [2] recently proposed a method for the calculation of the trace of the
nuclear magnetic shielding tensor which eliminates the gauge origin problem. The
gauge origin independence is obtained by reformulating the diamagnetic contribu-
tion in Eq. (1) as a sum-over-states so that it has a form similar to the paramagnetic
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contribution
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The gauge origin independence of the trace of the nuclear magnetic shielding
constant is ensured by the operator

o_ (r—Rg)
o —{—————lr_RKPxR}xp. 4)

The operator (r—Rg)/|r—Rg|> x I(R)+0° is not Hermitian and a computa-
tionally more convenient Hermitian expressions can be obtained by also including
the operator [2]

lh ¥ 3 r—RK 41
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However, the operators O and Of% introduce a linear dependence on the
position of the origin of the coordinate system in Geertsen’s reformulated diamag-
netic term. This linear dependence on the origin of the coordinate system was first
pointed out by Lazzeretti et al. [9]. Adding the additional operator

o_ ) (r—Rg)
05= {———V_RKPXI} Xp 6)

removes the linear dependence on the coordinate system in 0°. We may add this
operator because the trace of [r, 041 =0in a complete basis set which means that it
does not change the trace of ¢® [1, 2]. A final Hermitian, gauge origin and
coordinate system invariant expression for the nuclear magnetic shielding constant
can then be obtained using the operator

r—Rg ih r—Rg

R (2 a
P |3><1( J+0T+03 - s (7)

for the diamagnetic contribution in Eq. (3). This operator is, as shown in an earlier
publication [1], identical to the operator suggested by Smith et al. [10]. The
calculations reported here were performed using the operator in Eq. (7).

The reformulation of ¢ relies on certain operator relations [1] which are
strictly fulfilled for exact states and for all methods which fulfill hypervirial
relations in the limit of a complete basis set. Calculations of the diamagnetic term
as a ground state average value (Eq. (1)) with and SCF wavefunction and as
sum-over-states (Eq. (3)) at the RPA level will therefore converge to the same limit
only in a complete basis set.

In addition to the gauge and coordinate origin independence, the present
approach has the advantage that one may use the same correlated sum-over-states
method to calculate both the paramagnetic and the diamagnetic contributions to
the magnetic properties [11] and thus obtain a similar advantage as in MP2- and
MC-based calculations of shieldings.
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Sum-over-states expressions like Eqs. (1) and (3) are zero-energy limits of
a polarization propagator [3] or linear response function [12]

{<0IP|n><nIQ|0>_<0|an><an|0>}.
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We thus calculate the nuclear magnetic shielding constant from the following
polarization propagators:

1 e’ IRg) .
7x®) _%l .z Bmmg <<<|"—RK|3>i’ (I(R))i>>E=o’ 1o
. e2g r—Ry s s b r—Rg
O-?((R)_éi:x’y,z 811:m§ <<(| R |3 I(R)+O +0 2 | .R |3> (p)i>>E:O'
(11)

These polarization propagators may be evaluated using a superoperator for-
mulation of the linear response function [ 3]. Electron correlation is included in our
calculations by means of perturbation theory. As zeroth-order reference state we
use an SCF wavefunction and as perturbation the fluctuation potential. The
polarization propagator is evaluated through 2nd order in the fluctuation poten-
tial. In first order we obtain the random phase approximation (RPA), which is
equivalent to the coupled Hartree—-Fock method (CHF). In second order we obtain
the second order polarization propagator approximation (SOPPA) [3]. Higher
order terms are also contained in SOPPA in addition to all contributions up to and
including second order and several additional series of diagrams are summed to
infinite order in SOPPA compared with RPA. These collective excitation effects
[13] have no corresponding counterpart in MP2 analytical derivative calculations
as they are primarily caused by the requirement that the poles of the polarization
propagators, i.e. the excitation energies, are correct to second order [3]. A similar
condition is not invoked in the MP2 calculation of second order properties.

2 Computational details

All calculations have been performed with the Odense version of the RPAC 9.0
program package [ 14, 1]. The atomic integrals and molecular orbital energies were
obtained from the Gaussian 92 program system [ 15], which was interfaced with the
RPAC program. We use 5 spherical d- and 7 spherical f-functions. The calculations
were performed at experimental equilibrium geometries taken from Refs. [16-18]
(Ref. [18] for CH,) with the exception of BH; where we used the MP2 optimized
geometry in our basis set. For further details see the footnotes of Table 1. The W,
term [3] is not included in the SOPPA calculations of the shielding constants.
In the first paper [1] we systematically tested basis sets for correlated calcu-
lations of the magnetizability and nuclear magnetic shielding constants using the
gauge origin independent method. Our final basis sets gave good agreement
between the ground state average value, Eq. (1), and sum over states results, Eq. (3),
of the diamagnetic term for the molecules studied and also seemed to be converged
at the SOPPA level. We thus used them in the present study without further
optimization. The reader is refered to Ref. [1] for a detailed description of the basis
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Table 1. Total energies and Thomas—Reiche—Kuhn sum rules®

Basis set® #°¢ Egcr AEwp2 S¥ea©)
BF¢ Spubiafa 150 —124.167220 —0.446529 13.9981
F,® Spudiafa 150 —198.770975 —0.675943 17.9973
BH,f Spudiafa/spid 141 —26.402240 —0.162729 7.9942
CH,® spudiafs/spd 163 —40.216499 —0.254858 9.9962
NH;? Spudiafa/spd 141 —56.223936 —0.298855 9.9967
H,0! Sputhafa/spd 119 —76.066200 —0.332326 9.9960
HF* Spadiafo/spd 97 —100.069451 —0.350180 9.9970
HCN! Spudafa/spd 172 -92.914292 —0.462389 13.9981
C,H,™ Spudiafa/sDs 184 —76.854576 —0.418465 13.9966

2 Egcr is the Hartree—Fock SCF total energy, AEyp, is the MP2 correlation energy and S¥p,(0) is the
RPA value of the Thomas—Reiche—Kuhn sum rule in the mixed representation. Egcr and AEyp, are in
_ atomic units: 1 au of E=E;~4.35975x 10712 J.

b For the definitions of the basis sets see Table 1 and Table 2 in Ref. [1]. The symbol in front and after
the solidus refers to the basis sets centered on the heavy atoms and on the hydrogen atoms, respectively.
¢ The number of contracted Gaussian-type functions.

4 Rer=1.2625 A [16]

° Rep=141193 & [16]

f Rgy=1.18281215 A, 3 HBH=120°

£ Reu=1.086 A [18]

h Raa=1.0124 A, 4 HNH=106.67° [17]

i Roy=09572 A, x HOH=104.52° [17]

£ Rer=0.9168 A [16]

'Rew=1.064 A, Roy=1.156 A [17]

™ Rec=1.203 A, Roy=1.060 A [17]

sets for hydrogen, carbon, nitrogen and oxygen. The basis sets for boron and
fluorine were derived in the same way. We started with the 11s7p basis sets from
van Duijneveldt [19] and contracted the s-functions with the four largest expo-
nents into one function. The s-functions with the three smallest exponents were
replaced by an even tempered set of four functions ({,=0.696162, 0.280732,
0.113207, 0.045652 for boron and {;=2.713189, 1.076494, 0.427114, 0.169463 for
fluorine). We then added two tight p-functions with exponents {,=656, 152 for
boron and {,=2473, 581 for fluorine. Finally, the 3d and 2fbasis sets from Dunning
[20] augmented with two d-functions ({;=3.065, 0.052 for boron and {;=14.574,
0.199 for fluorine) were added.

In Table I we give the SCF total energies, the MP2 correlation energy and the
Thomas—Reiche—Kuhn (TRK) sum rule, S(0), for all molecules. Calculated at the
RPA level with a complete basis set, the TRK sum rule is equal to the number of
electrons and can therefore be used as a criterion for the completeness of a basis set.
A second and in this case more direct criterion is provided by the agreement
between calculations using the ground state average value expression for the
diamagnetic contribution (Eq. (1)) with an SCF wavefunction, on the one hand,
and evaluating the sum-over-states expression (Eq. (11)) at the RPA level on the
other. The latter criterion applied to the diamagnetic contribution to the nuclear
magnetic shielding constant at the RPA level demonstrates the completeness of the
basis set as the two diamagnetic contributions differ by only ~0.3% for the 'H
shielding constants (Table 3) and (~0.2%) for the non-hydrogen shielding con-
stants (Table 2). We can, therefore, conclude that the basis sets also give a good and
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balanced description of the magnetic properties of these cases, without being
specially optimized for the individual molecules.

3 Results

There is little difference between our RPA results for the nuclear magnetic shielding
constants (Tables 2 and 3) and other comparable uncorrelated calculations
[7,21-25] (see footnotes of Tables 4 and 5). The previous common origin RPA and
SOPPA calculation of the 'H shielding constant in HCN [26] was performed in
a smaller basis set and is thus not of the same quality as the present results.

In our previous study of triply bonded systems [ 1] we found that SOPPA gives
much smaller diamagnetic correlation corrections than MP2 [22,24] or MC-
IGLO [21]. A similar but weaker trend can be observed also for the non-hydrogen

Table 4. Comparison between LORG/SOLO and the corresponding common origin method for the
nuclear magnetic shielding constant®

SCF/RPA SCF/SOPPA  LORG SOLO Full LORG Full SOLO

HBF: BH,4 30.53 12.52 30.53 12.52 3045 12.70
BF, 7532 65.31 75.01 64.61 75.03 65.17

13C: CH, 194.56 195.59 194.56 195.59 194.50 190.76
13N: NH; 260.56 266.14 260.56 266.14 260.51 260.39
170: H,0 325.46 331.62 325.46 331.62 325.52 327.50
19F: HF 412.53 413.55 412.53 413.55 412.68 411.66
BF 122.74 104.65 122.72 113.08 122.80 116.56

F, —170.26 —250.44 —17035 —250.89 —170.24 —242.77

# SCF/RPA is the common origin gauge dependent nuclear magnetic shielding constant denoted o, in
Table 3. SCF/SOPPA is the analogous approximation where the paramagnetic contribution is cal-
culated at the SOPPA level. For the definition of LORG, SOLO, full LORG and full SOLO see Ref.
[40]. For an explanation of differences between the SOLO/full SOLO/SOPPA results see the text. All
nuclear magnetic shielding constants are given in ppm. The core and ¢ orbitals were localized
separately.

Table 5. Comparison between LORG/SOLO and the corresponding common origin method for
'H nuclear magnetic shielding®

SCF/RPA SCF/SOPPA LORG SOLO Full LORG  Full SOLO

BH; 24.61 23.84 24.58 24.02 24.56 24.00
CH,4 31.62 31.31 31.56 31.57 31.52 31.49
NH; 3161 31.46 31.53 31.60 31.48 31.40
H,O 30.66 3091 30.57 30.86 30.50 30.52
HF 28.37 29.38 28.19 29.07 28.08 28.54
HCN 29.23 29.18 29.12 29.64 29.08 29.48
C.H, 30.55 30.62 30.30 30.64 30.24 3045

2 See footnote of Table 4.
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shielding constants in the singly bonded molecules studied here (Table 2). MP2
[22,24] always gives a positive correlation correction, whereas SOPPA predicts
a smaller positive contribution for CH,, NH; and H,O as well as a small negative
correction for HF and a large negative correction for F,. Correlation at the
SOPPA levels also reduces the **B and *°F shielding constants in BH; and BF.
The MC-IGLO calculations [21] seem to support the smaller correction of
SOPPA for H,O and the paramagnetic corrections for HF and F, but not for
NHs,.

SOPPA improves the agreement with the experimental absolute shielding
constants for CH, [27], H,O [28], HF [29] and NH; [30]. The shielding,
however, is not a directly measurable quantity. Instead, a direct comparison would
involve the calculation of the related [7] spin rotation constant and also its
ro-vibrational dependence. This was done previously for NH; [31] for which
another comparison between theory and experiment has been performed by
calculating the temperature dependence of the nitrogen shielding [32]. Since
vibrational corrections are known to be important [33] for the nuclear magnetic
shielding in F,, we have used this molecule to illustrate the magnitude of the
vibrational corrections. We calculated the shielding constant for seven different
geometries (Rgp, Rpr1+0.1a9, Rpp+0.2a9, Rpr+0.3a,) and calculated the zero-
point-vibrational average by numerical integration over the ground ro-vibrational
wavefunction [34], which was obtained from an experimental RKR potential [35].
These averaged results (RPA: —200.4 ppm, SOPPA: —290.9 ppm) can than be
compared with the experimental value for the vibrational ground state
(—232.8 ppm [36]). Contrary to what we normally find SOPPA apparently gives
a too negative correlation correction in this case. We find, however, that the
computed vibrational correction at the SOPPA level, —39 ppm, is in very good
agreement with the value obtained from the temperature dependence of o,
—40 ppm [33].

The effect of correlation on the *H shieldings constants (Table 3) is small, an
observation also confirmed by the previously mentioned MP2 and MC-IGLO
calculations. SOPPA gives a paramagnetic correlation contribution to the hydro-
gen shielding constant in CH,, C,H, and NH; and a diamagnetic contribution for
H,O, HF, and HCN. The agreement with the experimental absolute shielding
constants [37-39] is fair.

In Tables 4 and 5 we compare gauge origin dependent, common origin RPA
and SOPPA results with LORG/SOLO [40] and full LORG/full SOLO calcu-
lations using the same basis set. The diamagnetic term is calculated as an SCF
ground state average value in all three approaches (the two local origins and the
common origin) and thus only the paramagnetic term is correlated in a SOLO or in
a gauge origin dependent, common origin SOPPA calculation. In the limit of
a complete basis set, LORG, full LORG and gauge origin dependent, common
origin RPA calculations will converge to the same result, because the operator
relations used in the derivation of LORG and full LORG are fulfilled in the limit of
a complete basis set at the RPA level and the SCF wavefunction is the RPA
reference state. This is, however, not the case for SOLO, full SOLO and gauge
origin dependent, common origin SOPPA. The main reason [40] is that some
terms in the paramagnetic contribution of the common origin method are trans-
formed into diamagnetic like terms in the local origin methods and are thus
calculated at the SCF level and not at the correlated level applied to the calculation
of ¢® in SOLO/full SOLO. As expected Table 4 shows the good agreement
between all methods at the RPA level and also between common origin SOPPA
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and SOLO with the exception of BF. Full SOLO, however, deviates clearly from
the other two methods and predicts in some cases even a different sign of the
correlation correction. For the 'H shielding constants in Table 5, however, all three
methods give basically the same result, due to the smallness of the correlation
contribution.

4 Conclusions

Using a gauge origin invariant method, we have calculated the nuclear magnetic
shielding constants of BF, F,, HF, H,0, NH3, CH, and BH; as well as the 'H
shielding constants in HCN and C,H,. Correlation was included in our calcu-
lations by means of the second order polarization propagator approximation
(SOPPA). We used basis sets which have been optimized previously for correlated,
gauge origin invariant calculations of magnetic properties.

For the nuclear magnetic shielding constants, the correlation contribution is
less diamagnetic at the SOPPA level than at the MP2 level and, with the exception
of NH3, in better agreement with MC-IGLO calculations. However, the differences
between SOPPA and the other methods as well as the experimental results are
much smaller than what we found in our previous study on triply bonded systems.
The only exception is the shielding constant of F,, where SOPPA gives a large
paramagnetic correlation correction (—80.76 ppm) compared with a weakly dia-
magnetic contribution (4 0.48 ppm) from MP2.
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