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Summary. We have applied a gauge origin invariant method for calculations of 
nuclear magnetic shielding constants to the singly bonded molecules BF, F2, BH3, 
CH4, NH3, H20,  and HF as well as to the 1H shielding constants of H C N  and 
C2H2 . The calculations were performed at the RPA and second order polarization 
propagator (SOPPA) level of theory. For  most molecules the correlation contribu- 
tion in SOPPA is less diamagnetic than in the comparable MP2 calculations. For  
F2, SOPPA gives a large paramagnetic correlation correction whereas the MP2 
method gives a very small correlation contribution. For  all molecules agreement 
with experimental results is generally improved at the SOPPA level compared to 
RPA. We have also demonstrated that second order gauge origin invariant, 
common and local origin (SOLO) methods do not necessarily give the same 
shielding even in the limit of a converged basis set. 

Key words: Magnetic shieldings - A b  i n i t i o -  Polarization propagator methods 
- SOPPA - Gauge origin invariant 

1 Introduction 

In the first paper of this series [1] we applied a method for consistently correlated 
calculations [-2] of magnetizabilities and gauge origin independent nuclear mag- 
netic shielding constants to the triply bonded molecules CO, N2, HCN, C N -  and 
HCCH. We systematically investigated the basis set dependence of this new 
method and found that inclusion of p- and d-functions with large exponents is 
important for the convergence of the sum-over-states diamagnetic contribution to 
the nuclear magnetic shielding, whereas it is necessary to include diffuse d-functions 
for the corresponding sum-over-states diamagnetic contribution to the magnetiza- 
bility. Universal atomic basis sets containing these functions were developed and 
applied to all of the molecules studied. The effect of electron correlation was 
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investigated within the second order polarization propagator approximation 
(SOPPA) [3]. We found that SOPPA gives a much smaller overall diamagnetic 
correlation contribution to the nuclear magnetic shielding constants of the heavy 
atoms in the triply bonded molecules than comparable MP2 and MC-based 
calculations. We found an overall paramagnetic correlation correction to the 
magnetizability. 

In a second paper [4] we applied this method in combination with the coupled 
cluster polarization propagator approximations (CCDPPA/CCSDPPA) [5] to the 
potential temperature independent van Vleck paramagnetism of closed shell dia- 
tomic hydrides with six valence electrons. We have found that BH, CH ÷ and Sill ÷ 
are paramagnetic, MgH-, A1H and GeH ÷ are diamagnetic and Bell-  is a border- 
line case tilting towards paramagnetism. In the present paper we apply the gauge 
origin invariant method for calculations of nuclear magnetic shielding constants 
and the basis sets developed in the first paper [-1] to seven simply singly bonded 
molecules: BF, F2, BH3, CH4, NH3, H20, and HF as well as to HCN and C2H2. 

From second-order perturbation theory one obtains two contributions to the 
nuclear magnetic shielding tensor [6]: the so-called diamagnetic (~ ~) and paramag- 
netic (~v) terms 

ffK(R) = ~( (g)  -q- ~((R) 

e2#o IO (r_R). (r--RK) l_(r_R) (r--RK) O> 
8 ~ m o  Ir--RK[ 3 Ir--RKI 3 

0 I(RK) n><nll(R)lO> 
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• e#o 
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where all operators are given in the second quantization notation. Here 
l(Rx) = (r--Rx) xp is the angular momentum operator defined with respect to the 
position of the nucleus K while I(R) = (r- R) x p is defined with respect to the gauge 
origin R. The two contributions to the magnetic shielding tensor are linear in R. 
Only their sum, however, is an observable and must therefore be independent of the 
choice of R when exact eigenstates of the Hamiltonian are used in Eq. (1). This also 
holds for all methods which fulfill the off-diagonal hypervirial relation, such as the 
coupled perturbed Hartree-Fock/random phase approximation (CHF/RPA) or its 
multireference generalization (MC-RPA) in the limit of a complete basis set. In all 
other cases, there will remain a net gauge origin dependence of the total nuclear 
magnetic shielding constant 

*K(R') = .~ (R)  + C~-(R'--R).  (2) 

The linear C~ gauge origin dependence vector can be calculated directly [-7, 8] and 
it is thus possible to obtain the nuclear magnetic shielding constant for any gauge 
origin from a calculation at a single gauge origin. 

Geertsen [2] recently proposed a method for the calculation of the trace of the 
nuclear magnetic shielding tensor which eliminates the gauge origin problem. The 
gauge origin independence is obtained by reformulating the diamagnetic contribu- 
tion in Eq. (1) as a sum-over-states so that it has a form similar to the paramagnetic 
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contribution 
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The gauge origin independence of the trace of the nuclear magnetic shielding 
constant is ensured by the operator 

(r-R") ×R} 
( I r - -Rx l  3 

(4) 

The operator (r--RK)/Ir--RKI 3 x I(R) + 0 ~ is not Hermitian and a computa- 
tionally more convenient Hermitian expressions can be obtained by also including 
the operator [2] 

_ i h  ~ r_ 3 r - -Rg  4rt } 
O~n = 27c ( [r_RKI 3 +~ i r _ R x l  5 x { (r-- RK) × r} q-~- r~ (r--RK)r . (5) 

However, the operators O ~ and O~/ introduce a linear dependence on the 
position of the origin of the coordinate system in Geertsen's reformulated diamag- 
netic term. This linear dependence on the origin of the coordinate system was first 
pointed out by Lazzeretti et al. [9]. Adding the additional operator 

(¥--RK) ) 
= - × p  

Ur_RK] 3 X r ) 
(6) 

removes the linear dependence on the coordinate system in OL We may add this 
operator because the trace of Jr, O~-I =0 in a complete basis set which means that it 
does not change the trace of gd [-1, 2]. A final Hermitian, gauge origin and 
coordinate system invariant expression for the nuclear magnetic shielding constant 
can then be obtained using the operator 

r--R K ih r--R K 
Ir--RK] 3 x l ( R ) + O "  +O~z 2~ Ir--RKI 3 (7) 

for the diamagnetic contribution in Eq. (3). This operator is, as shown in an earlier 
publication [1], identical to the operator suggested by Smith et al. [10]. The 
calculations reported here were performed using the operator in Eq. (7). 

The reformulation of ~e relies on certain operator relations [1] which are 
strictly fulfilled for exact states and for all methods which fulfill hypervirial 
relations in the limit of a complete basis set. Calculations of the diamagnetic term 
as a ground state average value (Eq. (1)) with and SCF wavefunction and as 
sum-over-states (Eq. (3)) at the RPA level will therefore converge to the same limit 
only in a complete basis set. 

In addition to the gauge and coordinate origin independence, the present 
approach has the advantage that one may use the same correlated sum-over-states 
method to calculate both the paramagnetic and the diamagnetic contributions to 
the magnetic properties [11] and thus obtain a similar advantage as in MP2- and 
MC-based calculations of shieldings. 
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Sum-over-states expressions like Eqs. (1) and (3) are zero-energy limits of 
a polarization propagator [3] or linear response function [12] 

~<OIPIn><nlQlO> <OIQIn><nlPlO>~ 
((V; Q> >~=.~"o ( X'  E+Eo-E,, E+E,,-Eo J" 

(9) 

We thus calculate the nuclear magnetic shielding constant from the following 
polarization propagators: 
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These polarization propagators may be evaluated using a superoperator for- 
mulation of the linear response function [3]. Electron correlation is included in our 
calculations by means of perturbation theory. As zeroth-order reference state we 
use an SCF wavefunction and as perturbation the fluctuation potential. The 
polarization propagator is evaluated through 2nd order in the fluctuation poten- 
tial. In first order we obtain the random phase approximation (RPA), which is 
equivalent to the coupled Hartree-Fock method (CHF). In second order we obtain 
the second order polarization propagator approximation (SOPPA) [3]. Higher 
order terms are also contained in SOPPA in addition to all contributions up to and 
including second order and several additional series of diagrams are summed to 
infinite order in SOPPA compared with RPA. These collective excitation effects 
[13] have no corresponding counterpart in MP2 analytical derivative calculations 
as they are primarily caused by the requirement that the poles of the polarization 
propagators, i.e. the excitation energies, are correct to second order [33. A similar 
condition is not invoked in the MP2 calculation of second order properties. 

2 Computational details 

All calculations have been performed with the Odense version of the RPAC 9.0 
program package [ 14, 1]. The atomic integrals and molecular orbital energies were 
obtained from the Gaussian 92 program system [15], which was interfaced with the 
RPAC program. We use 5 spherical d- and 7 spherical f-functions. The calculations 
were performed at experimental equilibrium geometries taken from Refs. [16-18] 
(Ref. [18] for CH4) with the exception of BH3 where we used the MP2 optimized 
geometry in our basis set. For further details see the footnotes of Table 1. The W4 
term [3] is not included in the SOPPA calculations of the shielding constants. 

In the first paper [1] we systematically tested basis sets for correlated calcu- 
lations of the magnetizability and nuclear magnetic shielding constants using the 
gauge origin independent method. Our final basis sets gave good agreement 
between the ground state average value, Eq. (1), and sum over states results, Eq. (3), 
of the diamagnetic term for the molecules studied and also seemed to be converged 
at the SOPPA level. We thus used them in the present study without further 
optimization. The reader is refered to Ref. [1] for a detailed description of the basis 
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Table 1. Total energies and Thomas-Reiche-Kuhn sum rules a 
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Basis set b # e ESCF A EMP2 SRMpA (0) 

BF a spttdtj2 150 - 124.167220 -0.446529 13.9981 
F2 e Spttdtdf2 150 - 198.770975 --0.675943 17.9973 
BH3 r spttdtaf2/sptd 141 -26.402240 -0.162729 7.9942 
CH4 g spttdtdf2/sptd 163 -40.216499 -0.254858 9.9962 
NH3 h spttdtdf2/sptd 141 -56.223936 -0.298855 9.9967 
H 2 0 i  spttdtaf2/sptd 119 -76.066200 -0.332326 9.9960 
HF k spttdtafz/sptd 97 - 100.069451 -0.350180 9.9970 
HCN I spttdtdf2/sptd 172 -92.914292 -0.462389 13.9981 
C2H2 m spttdtafE/spt 184 -76.854576 -0.418465 13.9966 

a ESCF is the Hartree-Fock SCF total energy, AEMp 2 is the MP2 correlation energy and S~pA(0) is the 
RPA value of the Thomas-Reiche-Kuhn sum rule in the mixed representation. Esc F and AEup2 are in 
atomic units: 1 au of E=Eh~4.35975 x 10 -18 J. 
b For the definitions of the basis sets see Table 1 and Table 2 in Ref. [1]. The symbol in front and after 
the solidus refers to the basis sets centered on the heavy atoms and on the hydrogen atoms, respectively. 
c The number of contracted Ganssian-type functions. 
d R~F = 1.2625 A [16] 
e RFF= 1.41193 A [16] 
f RBH= 1.18281215 A, zi_HBH = 120 ° 
g Rcn = 1.086 A [18] 
h RNH= 1.0124 A, &HNH = 106.67 ° [17] 
i Ron=0.9572 ,&, &HOH= 104.52 ° [17] 
k RFH=0.9168 ~ [16] 
l Rcn = 1.064 ,~, RcN = 1.156 ~, [17] 
m Rcc = 1.203/~, Rcn = 1.060/~ [17] 

sets for hydrogen ,  ca rbon ,  n i t rogen  and  oxygen.  The  basis sets for b o r o n  and  
f luorine were der ived  in the same way. W e  s tar ted  with the 1 ls7p basis sets f rom 
van Dui jneve ld t  [193 and  con t rac ted  the s-funct ions with the four  largest  expo-  
nents  into one function.  The  s-functions with the three smallest  exponents  were 
rep laced  by  an even t empered  set of  four  funct ions (~s=0.696162, 0.280732, 
0.113207, 0.045652 for b o r o n  and  ~s -- 2.713189, 1.076494, 0.427114, 0.169463 for 
fluorine). W e  then  a d d e d  two t ight  p-funct ions  with exponents  ~p=656,  152 for 
b o r o n  and  ~p-- 2473, 581 for fluorine. Final ly ,  the 3d and  2fbas i s  sets f rom D u n n i n g  
[20] augmen ted  with two d-funct ions (~d= 3.065, 0.052 for b o r o n  and  (d = 14.574, 
0.199 for fluorine) were added.  

In  Tab le  I we give the S C F  to ta l  energies,  the M P 2  cor re la t ion  energy and the 
T h o m a s - R e i c h e - K u h n  (TRK) sum rule, S(0), for all molecules.  Ca lcu la ted  at  the 
R P A  level with a comple te  basis set, the T R K  sum rule is equal  to  the n u m b e r  of 
e lect rons  and  can therefore be used as a cr i ter ion for the comple teness  of a basis  set. 
A second and in this case more  direct  cr i ter ion is p rov ided  by  the agreement  
be tween ca lcula t ions  using the g r o u n d  state average value express ion for the 
d i amagne t i c  con t r i bu t ion  (Eq. (1)) with an S C F  wavefunct ion,  on the one hand,  
and  eva lua t ing  the sum-over-s ta tes  express ion (Eq. (11)) at  the R P A  level on the 
other.  The  la t te r  cr i te r ion  app l ied  to the  d iamagne t i c  con t r ibu t ion  to  the nuclear  
magne t ic  shielding cons tan t  a t  the  R P A  level demons t r a t e s  the completeness  of  the  
basis  set as the two d iamagne t i c  con t r ibu t ions  differ by  only ~ 0 . 3 %  for the 1H 
shielding cons tan t s  (Table 3) and  ( ~ 0 . 2 % )  for the n o n - h y d r o g e n  shielding con- 
s tants  (Table 2). W e  can, therefore,  conc lude  tha t  the basis  sets also give a g o o d  and  
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ba lanced descript ion of the magnet ic  properties of these cases, wi thout  being 
specially optimized for the individual  molecules. 

3 Results 

There is little difference between our RPA results for the nuclear  magnet ic  shielding 
constants  (Tables 2 and  3) and  other comparable  uncorre la ted calculations 
[7, 21-25]  (see footnotes of Tables 4 and 5). The previous c o m m o n  origin R P A  and  
S O P P A  calculat ion of the 1H shielding cons tant  in H C N  [26] was performed in 
a smaller basis set and  is thus no t  of the same qual i ty as the present  results. 

In  our  previous s tudy of triply bonded  systems [1] we found that  S O P P A  gives 
much  smaller diamagnet ic  correlat ion corrections than  M P 2  [22, 24] or MC-  
I G L O  [21]. A similar bu t  weaker t rend can be observed also for the non-hydrogen  

Table 4. Comparison between LORG/SOLO and the corresponding common origin method for the 
nuclear magnetic shielding constant" 

SCF/RPA SCF/SOPPA LORG SOLO Full LORG Full SOLO 

11BF: BH3 30.53 12.52 30.53 12.52 30.45 12.70 
BF3 75.32 65.31 75.01 64.61 75.03 65.17 

13C: CH 4 194.56 195.59 194.56 195.59 194.50 190.76 
lSN: NH3 260.56 266.14 260.56 266.14 260.51 260.39 
1 7 0 : H 2 0  325.46 331.62 325.46 3 3 1 . 6 2  325.52 327.50 
19F: H F  412.53 413.55 412.53 4 1 3 . 5 5  412.68 411.66 

BF 122.74 104.65 122.72 113.08 122.80 116.56 
F2 - 170.26 - 250.44 - 170.35 - 250.89 - 170.24 - 242.77 

SCF/RPA is the common origin gauge dependent nuclear magnetic shielding constant denoted acorn in 
Table 3. SCF/SOPPA is the analogous approximation where the paramagnetic contribution is cal- 
culated at the SOPPA level. For the definition of LORG, SOLO, full LORG and full SOLO see Ref. 
[40]. For an explanation of differences between the SOLO/full SOLO/SOPPA results see the text. All 
nuclear magnetic shielding constants are given in ppm. The core and a orbitals were localized 
separately. 

Table 5. Comparison between LORG/SOLO and the corresponding common origin method for 
1H nuclear magnetic shielding a 

SCF/RPA SCF/SOPPA LORG SOLO Full LORG Full SOLO 

BH 3 24.61 23.84 24.58 24.02 24.56 24.00 
CH 4 31.62 31.31 31.56 31.57 31.52 31.49 
NH3 31.61 31.46 31.53 31.60 31.48 31.40 
H/O 30.66 30.91 30.57 30.86 30.50 30.52 
HF 28.37 29.38 28.19 29.07 28.08 28.54 
HCN 29.23 29.18 29.12 29.64 29.08 29.48 
C2H2 30.55 30.62 30.30 30.64 30.24 30.45 

a See footnote of Table 4. 
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shielding constants in the singly bonded molecules studied here (Table 2). MP2 
[22, 24] always gives a positive correlation correction, whereas SOPPA predicts 
a smaller positive contribution for CH4, NH3 and H20  as well as a small negative 
correction for HF and a large negative correction for F2. Correlation at the 
SOPPA levels also reduces the 11B and 19F shielding constants in BH3 and BF. 
The MC-IGLO calculations [21] seem to support the smaller correction of 
SOPPA for H20  and the paramagnetic corrections for HF and F2 but not for 
NH3. 

SOPPA improves the agreement with the experimental absolute shielding 
constants for CH 4 [27], H20  [281, HF [29] and NH3 [30]. The shielding, 
however, is not a directly measurable quantity. Instead, a direct comparison would 
involve the calculation of the related [7] spin rotation constant and also its 
ro-vibrational dependence. This was done previously for NH3 [31] for which 
another comparison between theory and experiment has been performed by 
calculating the temperature dependence of the nitrogen shielding [32]. Since 
vibrational corrections are known to be important [-33] for the nuclear magnetic 
shielding in F2, we have used this molecule to illustrate the magnitude of the 
vibrational corrections. We calculated the shielding constant for seven different 
geometries (Rvv, Rvv+_O.lao, Rvv+_O.2ao, Rvv+_O.3ao) and calculated the zero- 
point-vibrational average by numerical integration over the ground ro-vibrational 
wavefunction [34], which was obtained from an experimental RKR potential [35]. 
These averaged results (RPA: -200.4 ppm, SOPPA: -290.9 ppm) can than be 
compared with the experimental value for the vibrational ground state 
(-232.8 ppm [36]). Contrary to what we normally find SOPPA apparently gives 
a too negative correlation correction in this case. We find, however, that the 
computed vibrational correction at the SOPPA level, - 3 9  ppm, is in very good 
agreement with the value obtained from the temperature dependence of ~r, 
- 4 0  ppm [33]. 

The effect of correlation on the 1H shieldings constants (Table 3) is small, an 
observation also confirmed by the previously mentioned MP2 and MC-IGLO 
calculations. SOPPA gives a paramagnetic correlation contribution to the hydro- 
gen shielding constant in CH4, C2H2 and NH3 and a diamagnetic contribution for 
H20  , HF, and HCN. The agreement with the experimental absolute shielding 
constants [37-39] is fair. 

In Tables 4 and 5 we compare gauge origin dependent, common origin RPA 
and SOPPA results with LORG/SOLO [40] and full LORG/full SOLO calcu- 
lations using the same basis set. The diamagnetic term is calculated as an SCF 
ground state average value in all three approaches (the two local origins and the 
common origin) and thus only the paramagnetic term is correlated in a SOLO or in 
a gauge origin dependent, common origin SOPPA calculation. In the limit of 
a complete basis set, LORG, full LORG and gauge origin dependent, common 
origin RPA calculations will converge to the same result, because the operator 
relations used in the derivation of LORG and full LORG are fulfilled in the limit of 
a complete basis set at the RPA level and the SCF wavefunction is the RPA 
reference state. This is, however, not the case for SOLO, full SOLO and gauge 
origin dependent, common origin SOPPA. The main reason [401 is that some 
terms in the paramagnetic contribution of the common origin method are trans- 
formed into diamagnetic like terms in the local origin methods and are thus 
calculated at the SCF level and not at the correlated level applied to the calculation 
of t~P in SOLO/full SOLO. As expected Table 4 shows the good agreement 
between all methods at the RPA level and also between common origin SOPPA 
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and S O L O  with the exception of BF. Full SOLO,  however, deviates clearly from 
the other  two methods  and predicts in some cases even a different sign of  the 
correlat ion correction. Fo r  the 1H shielding constants  in Table 5, however,  all three 
methods  give basically the same result, due to the smallness of  the correlat ion 
contribution.  

4 Conclusions 

Using a gauge origin invariant  method,  we have calculated the nuclear magnetic 
shielding constants  of  BF, F2, HF,  H 2 0 ,  NH3,  CH4 and BH3 as well as the 1H 
shielding constants  in H C N  and C2H2. Correlat ion was included in our  calcu- 
lations by means of the second order  polarizat ion p ropaga to r  approximat ion  
(SOPPA).  We used basis sets which have been optimized previously for correlated, 
gauge origin invariant  calculations of magnetic  properties. 

Fo r  the nuclear magnetic  shielding constants,  the correlat ion contr ibut ion is 
less diamagnetic at the S O P P A  level than at the M P 2  level and, with the exception 
of  NH3,  in better agreement  with M C - I G L O  calculations. However,  the differences 
between S O P P A  and the other  methods  as well as the experimental results are 
much smaller than what  we found in our  previous s tudy on triply bonded  systems. 
The only exception is the shielding constant  of Fz, where S O P P A  gives a large 
paramagnet ic  correlat ion correction ( - 8 0 . 7 6  ppm) compared  with a weakly dia- 
magnetic  contr ibut ion (+0 .48  ppm) from MP2.  
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